Methanosphaera stadtmanae induces a type IV hypersensitivity response in a mouse model of airway inflammation
نویسندگان
چکیده
Despite improved awareness of work-related diseases and preventive measures, many workers are still at high risk of developing occupational hypersensitivity airway diseases. This stems from a lack of knowledge of bioaerosol composition and their potential effects on human health. Recently, archaea species were identified in bioaerosols, raising the possibility that they play a major role in exposure-related pathology. Specifically, Methanosphaera stadtmanae (MSS) and Methanobrevibacter smithii (MBS) are found in high concentrations in agricultural environments and respiratory exposure to crude extract demonstrates immunomodulatory activity in mice. Nevertheless, our knowledge of the specific impact of methanogens exposure on airway immunity and their potential to induce airway hypersensitivity responses in workers remains scant. Analysis of the lung mucosal response to methanogen crude extracts in mice demonstrated that MSS and MBS predominantly induced TH17 airway inflammation, typical of a type IV hypersensitivity response. Furthermore, the response to MSS was associated with antigen-specific IgG1 and IgG2a production. However, despite the presence of eosinophils after MSS exposure, only a weak TH2 response and no airway hyperresponsiveness were observed. Finally, using eosinophil and mast cell-deficient mice, we confirmed that these cells are dispensable for the TH17 response to MSS, although eosinophils likely contribute to the exacerbation of inflammatory processes induced by MSS crude extract exposure. We conclude that, as MSS induces a clear type IV hypersensitivity lung response, it has the potential to be harmful to workers frequently exposed to this methanogen, and that preventive measures should be taken to avoid chronic hypersensitivity disease development in workers.
منابع مشابه
The Intestinal Archaea Methanosphaera stadtmanae and Methanobrevibacter smithii Activate Human Dendritic Cells
The methanoarchaea Methanosphaera stadtmanae and Methanobrevibacter smithii are known to be part of the indigenous human gut microbiota. Although the immunomodulatory effects of bacterial gut commensals have been studied extensively in the last decade, the impact of methanoarchaea in human's health and disease was rarely examined. Consequently, we studied and report here on the effects of M. st...
متن کاملExtensive Inter-Domain Lateral Gene Transfer in the Evolution of the Human Commensal Methanosphaera stadtmanae
Methanosphaera stadtmanae is a commensal methanogenic archaeon found in the human gut. As most of its niche-neighbors are bacteria, it is expected that lateral gene transfer (LGT) from bacteria might have contributed to the evolutionary history of this organism. We performed a phylogenomic survey of putative LGT events in M. stadtmanae, using a phylogenetic pipeline. Our analysis indicates that...
متن کاملThe Human-Associated Archaeon Methanosphaera stadtmanae Is Recognized through Its RNA and Induces TLR8-Dependent NLRP3 Inflammasome Activation
The archaeon Methanosphaera stadtmanae is a member of the gut microbiota; yet, the molecular cross-talk between archaea and the human immune system and its potential contribution to inflammatory diseases has not been evaluated. Although archaea are as bacteria prokaryotes, they form a distinct domain having unique features such as different cell wall structures and membrane lipids. So far, no m...
متن کاملBiofilm formation of mucosa-associated methanoarchaeal strains
Although in nature most microorganisms are known to occur predominantly in consortia or biofilms, data on archaeal biofilm formation are in general scarce. Here, the ability of three methanoarchaeal strains, Methanobrevibacter smithii and Methanosphaera stadtmanae, which form part of the human gut microbiota, and the Methanosarcina mazei strain Gö1 to grow on different surfaces and form biofilm...
متن کاملHigh Prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae Detected in the Human Gut Using an Improved DNA Detection Protocol
BACKGROUND The low and variable prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae DNA in human stool contrasts with the paramount role of these methanogenic Archaea in digestion processes. We hypothesized that this contrast is a consequence of the inefficiencies of current protocols for archaeon DNA extraction. We developed a new protocol for the extraction and PCR-based de...
متن کامل